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1. Introduction 

In evaluating educational programs it is often 
not possible to conduct a rigorous randomized ex- 
periment. Estimates of program effects must be 
based on uncontrolled observational studies or 
partially controlled quasi -experiments. These 
studies generally involve comparisons of treat- 
ment group performance with that of a nonequiva- 
lent control group. Because the groups being com- 
pared are not completely equivalent prior to the 
intervention, observed outcome differences may re- 
flect these prior differences in addition to the 
treatment effect. That is, estimates of the 
effect based on a direct comparison of post- 
treatment measures will be biased. 

Traditional analysis methods use an adjustment 
approach in attempting to reduce this bias. Pre- 

treatment differences between a treatment and con- 
trol group are modelled. Statistical techniques 
based on the model are used to compensate, or ad- 
just for these initial differences when comparing 
outcome data for the two groups. 

One of the major potential sources of bias in 
such studies derives from the fact that individ- 

uals grow at different rates in the absence of a 
treatment. Thus the effects of a program may be 
confounded with natural growth, or maturation. In 

a previous paper (Bryk and Weisberg, 1977) we have 
detailed some of the problems encountered by tra- 
ditional statistical methods for analyzing quasi - 
experiments when individuals are growing. 

In this paper we discuss an alternative analy- 
sis strategy based on a projection approach. Util- 
izing information in the data set on individual 
growth, the strategy involves explicitly project- 
ing the growth the program group would have ach- 
ieved without any intervention. Actual growth can 
then be compared with projected growth; the dif- 
ference is termed the value -added by the program. 

The value -added technique was originally pre- 
sented (Bryk and Weisberg, 1976) in terms of a 
very restricted model: all individuals were as- 
sumed to have identical growth rates. In this pa- 
per we extend the model to consider variable in- 
dividual growth rates. 

Note that, unlike adjustment techniques, the 
value -added approach does not necessarily assume 
the availability of data on an untreated control 
group. It is essentially a single -group design. 
On the other hand, it does require a sufficient 
combination of theory and empirical data to esti- 
mate natural growth. In this paper we assume that 
subjects are tested twice: once prior to the pro- 
gram, at a pretest time that we denote by t1, and 
once at the end, at a posttest time t2. Our ob- 
jective is to estimate the average increment at 
the posttest time which is attributable to program 
experience. 
2. Model and Rationale 

We assumed that each individual's growth is a 
linear function of age. Let us denote by ai(t) 
the age of individual i at time t. Individuals 
are assumed to vary in terms of growth rate and 
onset age di (the age when non -negligible growth 
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begins). Moreover, they are assumed to be sampled 
from a population in which and are independen- 

tly ddistributed with means 117, and variances 

This model represents the simplest situation 

that incorporates varying individual growth. 
While too simple to represent realistically many 
educational processes, linear growth may be a 
reasonable approximation over a short term even 
if long -term growth has a more complex form. 

For the present, we will also assume that and 

are distributed to children independently of 
their age at pretest. That is, the older child- 
ren are not more likely to have started growth at 
a particular age than the younger, nor are they 
growing slower or faster. We examine this assum- 

ption, and some consequences of its violation, in 

a later section. 
Finally, we assume that observed growth Yi(t)' 

is made up of two components: systematic growth 

Gi(t) and a random noise component Ri(t) deter- 
mined by the particular circumstances at time t. 
Our basic model can be represented as 

(1) Gi(t) = [ai (t) - di] for Si 

and ai(t) < 

(2) Yi (t) = Gi (t) + Ri(t) 

where for all t, t' 

E [Ri(t)] = 

Cov[Ri(t), Ri(t')] = 

We also assume that the pretest time ti is set so 

that all subjects have begun to grow by that time. 
Combining equations (1) and (2) we can write 

(3) Yi(tl) = [ai(ti) -d] + Ri(tl) 

Let us for convenience define 

(4) A =t2 -t1 

Then if no treatment were introduced, we would 

have 

(5) Yi(t2) = ,i[ai(t2) - di] + Ri(t2) 

= Gi (ti) + + Ri(t2) 

In order to model a treatment effect, we assume 
that over the time interval ti to t2 the treat- 

ment increases each subject's growth by an amount 

(the value -added). The mean and variance of vi 
are and and v is assumed to be uncorrelated 
with any other variable in the model. Since vi is 

a random variable, this model in principle allows 
for individual effects. Finally, then, we can re- 

present the measured growth that subject i in the 

program group achieves by time t2 as 

(6) Yí(t2) = Gi(tl) + + vi + Ri(t2) 

We take the estimation of as the object of our 

analysis. 
Before proceeding further with the examination 

of this model, we present the rationale underlying 

the method. During the period between pretest and 



posttest, the average growth for the treatment 
group is Y(t2) - (t1). The expected growth un- 
der the model is If we knew the value of 
a natural estimator of the value -added would be 
(t2) - (t1) - So if we have an estimator 

of we might use 

(7) V = Y(t2) - (t1) - 

From equations (5) and (6) it is clear that 
ány unbiased will yield an unbiased estimator 

of In this paper we propose to use the 
ordinary least -squares regression coefficient of 
Y(t1) on age. This estimator is simple to compute 
nd intuitively appealing. In the next section we 
show that it is unbiased. 
3. Examining the Value -Added Method: Properties 

of 
In this section we consider some properties 

of the least- squares regression coefficient we 
are proposing as an estimate of 
Lemma 1: Taking expectation over the distribu- 
tions of and 6, 

E(N) = N. 

Proof: Our model is given by equation (3) with 
ni, di, and Ri mutually independent. We can re- 
write this equation as 

(8) Yi(ti) = - + {(Tri - 

- (nidi - + Ri(t1)) 

This equation is now in the form 

(9) Yi = + + ei 
with 

a 

ei = { - ai (ti) - Oidi - + Ri (t1 

Under our assumptions it is straightforward to ob- 
tain 

(10) E(e.lai) = 0. 

Thus our model satisfies the usual conditions un- 
der which ordinary least squares yields unbiased 
estimates of a and S. Q.E.D. 

We note, however, that the variance of the 
error term works out to be 

(11) Var(errori) = - + 

+ + + 

Thus the error variance is a quadratic function of 
ai(tl) and the OLS estimate, though unbiased, will 
be inefficient. In practice, we might wish to use 
a generalized least squares procedure to estimate 

Implementing this idea involves some complex 
problems which we are currently investigating. 

We next derive the variance of 
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Lemma 2: 

ai (t - 2K2 EAi 
(12) Var(u7) = 

K1 
+ 

Where K1 = = + + 

and K2 = = 

Proof: Let á(t) be the average age of the pro- 
gram group at time t, and Ai = ai(t) - a(t), no- 

ting that EAi = O. Then the usual least - squares 
estimate is given by: 

EAi[Yi(tl) - (t1)] 
(13) = 

EA. 

which simplifies to 

EA.Y.(tl) 
(14) = because EAi = O. Now 

EAi Var[Yi(tl)] 
(15) Var(u7) = 

2 

There are no covariance terms, since Cov(Y. ) = 

Thus we require Var[Yi(t1)] (recalling Yi(tl) 
from equation (3)): 

(16) Var[Yi(tl)] = + Var(Tridi) + 

- 2ai(t1 ) Cov 

Because we assume and are independent, 
we find Var(Trd) = K1, and = K2 as given 
in the statement of the Theorem. Thus equation 
(11) is indeed the variance of Q.E.D. 

This gives the variance of in terms of the 
parameters of the model. Note that the usual var- 

lance of is simply R , one term of our 

EA? 
variance. 
4. Examining the Value -Added Technique: Proper- 

ties of V. 
We now consider some statistical properties of 

the value -added estimator itself. From equations 
(S) through (7) we have 

O. 

n n n 

(17) V = + 1 + 1 E Ri (t2) 
i=1 i=1 i=1 

n 
1 E R(t )- A i 1 

i=1 



Theorem: 

(18) (a) E(V) = 

a + - + Var(pr) 
(b) Var(V) = 

Proof: (a) Apply expectation to both sides of 
equation (17); 

(19) E(V) =n (ni) +n (npv) +0 -0 )A 

= pv' 

(b) Take variances of both sides of equation 
(17); 

(20) Var(V) = + + + A2 

- 2A2 E . 

We already have Var(p7) from Lemma 2. 
n 

We require E : 

i =1 

First, using equation (13), 

n 
A. (t1) ] 

(21) Cov(ri,p,) j=1 
n 2 

E A. 

j=1 
We have 

(22) (t1) ] = 0 if i j 

-K2 + a2ai(tl) if i = j. 

So 

n 

-K2 E 
n i=1 

(23) Cov(Tri,pn) n 
i=1 E Ai 

i=1 

+ 

= 

Substituting this into equation (20) above and 
collecting terms, we get the expression in (b) of 
the Theorem. Q.E.D. 
Comments On This Theorem: 
1) V is unbiased, because pris. It may look as 
though we are using independent variables with 
error when we write the model --that is, we want 
[ai(tl) - 6i] and we know only -but the 
proof of 's unbiasedness shows that age alone 
is valid for estimating pr, and we usually know 
age accurately. 
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2) If everyone had the same growth rate, and we 
knew what it was, Var(V) would be + . 

The A2a4 arises from the differences in growth 

rate, and the other terms from the estimation of 
from data. 

5. Testing Significance of V 
In practice, we generally wish not only to 

estimate the treatment effect, but also to test 
its significance and /or to state a confidence 
interval. To derive such tests and intervals 
requires derivation of the distribution of V un- 
der various assumptions about the distribution of 
7F, 6, R and V. In the previous section we de- 
rived an expression for the variance of V. It 

is not obvious how to use it in developing the 
necessary statistical procedures. 

While the development of procedures based on 
the distribution of V is worth pursuing, another 
general purpose approach may prove useful. The 
jackknife technique (described in Chapter 8 of 
Mosteller and Tukey, 1977) can provide both a 
test statistic and standard error for use in 
forming confidence intervals. To apply the jack -, 
knife to our situation is fairly straightforward. 
Let all) be the least squares coefficient com- 
puted from the whole data set, and let be 
the coefficient computed with only observation i 

removed from the data. Then for each individual 
i a pseudo -value V *1 is calculated as 

(24) V = Yi(t2) - Yi(tl) - p 

where p7 *1 = (n- 

The are then treated as data points. Their 
mean V* provides an unbiased estimate of and 
the standard error allows calculation of a t- 
statistic with (n - 1) degrees of freedom for 
testing or interval estimation. 
6. Illustrative Example 

We take as an example a subset of the data 
collected to evaluate the Head Start Planned 
Variation program. We will consider the data on 
one curricular model for one outcome, the Pre- 

school Inventory (described in Walker, Bane and 
Bryk, 1973). All children were pretested at ages 
between 50 and 63 months, with mean age 56.80 
months. 

The mean pretest score is 14.116 and the mean 
posttest score is 20.454, out of a possible 32. 
The mean time between tests is 7.40 months. The 
least- squares regression coefficient of pretest 
on age is 0.484. Thus the estimated value -added 
is given by 

V = 20.454 - 14.116 - (0.484) (7.40) = 2.756. 

To test this value for Statistical significance, 
the jackknife procedure was carried out as de- 
scribed above. This resulted in a mean V* of 
2.764 which has a standard error of 1.192. The 
resulting t -value of 2.319 with 96 degrees of 
freedom is significant at the .05 level. 

7. Independence of Age and Individual Growth 
Characteristics. 
The value -added method as applied in this 

paper uses the cross -sectional relationship be- 
tween score and age at a particular point in 

time, tl, to estimate the mean growth rate for 



the program group. This approach assumes that 
individual growth characteristics (reflected by 
Tr and in our model) are independent of age. 

there exists a systematic relationship between 
these characteristics and age, then the pretest/ 
age relationship reflects not only individual 
growth but also the age gradient of and 

Non - independence can occur in at least two 
different ways. First, in the population from 
which individuals are sampled, there may be his- 
torical trends causing children born at different 
times to differ. For example, during the period 
when Sesame Street was first being introduced, 
younger children exposed to the program may have 
had different characteristics from older children 
not exposed. 

Second, even if this stable universe assump- 
tion (Kodlin and Thompson, 1958) is true for the 
population being studied, selection of the exper- 
imental sample may introduce an age by character- 
istic relationship. Criteria of selection may 
have operated so that younger children tend to 
have different characteristics from older ones. 
For example, the youngest children in a Head 
Start program may be there because they are un- 
usually mature for their ages, possibly entering 
a bit below the age threshold. The oldest chil- 
dren may be particularly slow, possibly even old 
enough to enter kindergarten but not really ready. 

To understand the effects of these phenomena, 
we develop a simple model. Let Ai represent the 
deviation of a subject from the group mean (as 

before), 

Ai = ai(t1) - a(t1) 

Let us assume further that the expected values of 
Tr and are functions of Ai: 

E(rilAi) = f(Ai) 
(25) 

E(6iIAi) = g(Ai) 

To see how this would affect our value -added 
technique, we look first at E[Yi(t1)1A], to see 
what the age versus pretest score graph will look 
like; that is, what the cross -sectional data will 
become. We have equation (3) for Yi(t ). If we 

take expectations, substitute for and 
E(6.IAi) from equation (25) and rewrite ai(t1) as 
[Ai + r(t1)], we arrive at this result: 

(26) E[Yi(tl)'Ai] f(Ai) [Ai + a(t1) - g(Ai)] 

We can see that unless we choose some special 

f and g, or they have some special parameteriza- 

tion, Y(t1) will become a nonlinear function of 
age. Thus the age versus pretest score graph will 

show curvature, and we can test for age selection 
by testing the age by pretest score graph for non - 
linearity. 
8. Linear Individual Growth Assumption 

Another possible problem is that individual 
growth may be non -linear. With extreme non - 

linearity, the linear approximation will not be 
trust -worthy even in the short term. For example, 

on a particular test as soon as a subject has 
thoroughly mastered all items, Yi flattens out at 
the perfect score (although the type of skill that 

had been measured may continue to improve). 
If we wish to retain the idea that each subject 
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has different parameters of the growth curve, 

then this problem becomes very complex. In Bryk 

(1977) an individual negative exponential growth 

curve is examined. This is a very appealing 
model for growth, which has been widely used in 
biological growth studies. Bryk derives the ex- 

pected value of (t) and shows that it is not a 
negative exponential function of time. More gen- 

erally, the average of non -linear growth curves, 

even when taken over subjects the same age, will 
not trace out the same shaped curve as the indi- 

viduals are following. This will make model 
identification difficult when only cross- section- 

al data are available. But, we with the age - 

growth dependence problem, at least we can see 

that the age versus pretest plot will not be 

linear. So, again, a test for linearity can be 

used as an indicator of failure to meet the 
model's assumptions. 
9. Directions for Further Research 

The use of the ordinary least - squares regres- 
sion coefficient to estimate was chosen for 

simplicity and intuitive appeal. We have shown 

that it leads to an unbiased estimate of py. In 

large samples, this estimator should be quite 

adequate. With smaller samples, however, it is 

not clear whether this approach yields estimates 

that are efficient enough for practical purposes. 

This question needs to be investigated. It may 

well be necessary to develop alternative estima- 

tion procedures with greater efficiency. 
Secondly, the model we have assumed here is 

the simplest model which incorporated diffential 

growth rates across individuals. Investigation 

of more complex models and development of corres- 

ponding analysis strategies is needed. For exam- 

ple, models could reflect various kinds of depen- 

dence between Tr and 6, various forms of non- 

linear growth, and various kinds of age -selection 

effects. 
Finally, a very important research area lies 

in the attempt to assess individual values of vi. 

If we could do this, we would be able to estimate 

and the distribution of v. We could also es- 

timate interactions between the vi and measured 

covariates. Particularly in this educational 
context, we are often interested in more than the 

simple average effect. Rather, we wish to dis- 

cover which programs help which students, by how 

much. 
In order to achieve this objective, the esti- 

mation of the individual v seems necessary. To 

accomplish this, however, more information will 

be needed. We have gone quite far with only two 

cross -sections, one as proxy for longitudinal 

data and the other to gauge progress. The next 

logical step is to gather more data on the same 

group, so that we really have, say, four or five 

data points on each subject. Through the combin- 

ation of cross -sectional and longitudinal per- 

spectives on the same data set we should be able 

to estimate more precisely both the mean effect 

and other aspects of the distribution of indi- 

vidual vi's. 
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